Paper published as:

Rudolph, S., Beichter, J., Eheim, M., Hess, S., Motzer, M. and Weil, R.:
“On Multi-Disciplinary Architectural Synthesis and Analysis of Complex Systems with Graph-based Design Languages”
62. Deutscher Luft- und Raumfahrtkongress (DGLR 2013), Stuttgart, September 10-12, 2013.

On Multi-Disciplinary Architectural Synthesis and Analysis of Complex
Systems with Graph-based Design Languages

S. Rudolph?, J. Beichter®, M. Eheim?®, S. Hess®*, M. Motzer®, R. Weil®

@ Institut flir Statik und Dynamik der Luft- und Raumfahrtkonstruktionen
Universitat Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Deutschland

Abstract

Architectural synthesis of complex systems such as aircraft cabin design requires much engineering insight
into the multi-disciplinary couplings of the sub-systems and their interconnecting networks (e.g. power, fluids,
information, etc.). However, the potential of new architectural solutions in a complex systems environment
is difficult to assess, since any assessment will require the elaboration of several architectural alternatives
which is manually not feasible using conventional techniques. As a result, the potential of new architectures
is never fully explored. Graph-based design languages have been conceived to solve the complex system
investigation problem and are therefore able to overcome this problem. The machine-executed compilation
of a graph-based design language in a design compiler allows very easily topological and parametrical design
variations, relieves the design engineering teams from the tedious routine works of manual model generation

and improves the re-use of design knowledge by re-use of design vocabulary and rules.

1. Introduction

The problem of multi-disciplinary architectural
synthesis and analysis of complex systems, or, in a
more philosophical formulation, the lacking capa-
bility of “system integration is currently considered
as the largest obstacle to an effective design of com-
plex systems” [1l]. This “is due primarily to the lack
of a solid scientific (and methodological) foundation
for the subject” [1] and, as a direct consequence, a
lack of appropriate and well adapted engineering
design software tools.

The current “lack of a solid understanding of a
science of system integration is not due to (some
active kind of ignorance or) neglect, but rather due
to its (scientific) difficulty” 1] and rigourness. Be-
cause of that many if not “most of the large sys-
tem builderd have therefore currently given up on
any design science or engineering design methodol-
ogy for system integration and treat it instead as a
management problem” [1I].

1Large system builders use many software tools in their
design flow which have been developed by a third party,
i.e. embody a design theory and methodology conceived else-
where. There exists therefore a latent danger that a third
party tool doesn’t match perfectly the real needs.

While treating physics problems in management
manner doesn’t sound like the most perfect problem
approachq anyway and by looking at both the engi-
neering impact and financial scale of the problem,
it seems quite evident that the problem of multi-
disciplinary system integration is currently one of
the most under-estimated and under-valued prob-
lem$d in complex system design [1]. At the same
time it is difficult to find another problem which
has bigger impact on engineered systems [1].

Graph-based design languages |2, [3] provide this
long sought-after solution approach to the prob-
lem of system integration with special emphasis on
multi-disciplinary architectural synthesis and anal-
ysis of complex systems such as aircraft cabins.

21t is evident that treating physics problems as a manage-
ment problems will cause severe trouble, since the problem
may only be solved if managment hits the physical solution.
As a consequence, it is highly probable that design cycles
with major rework will occur because the solution can only
be found incrementally by iterations.

31If a company was able to make a fair and unbiased as-
sessment of their financial losses due to ineffective processes,
data and tool inconsistencies, rework, late deliveries, etc., it
would be clear that even a serious investment into a system
design methodology and associated software tools belongs to
their most profitable investment opportunities.

RootArea

LRSplit (y=...) - RhsArea, Aisle, LhsArea

LhsArea

FASplit (x=...) - NonDoorArea, DoorAres, ...

NDA1Rhs || NDA2Rhs
Aisle
NDAlLhs || NDA2Lhs

Rhs
Fwd Aft

------- — Lhs
NDA..Rhs. DA NDA..Rhs

AisleRhs
- - NDA..Ctr DA NDA.Ctr

NDA3R

Il i Ailihs

171 NDA3Lhs NDA..Lhs DA NDA..Lhs

Figure 1: Cabin definitions

As stated above, these graph-based design lan-
guages may come only at the price of an underly-
ing new design science and methodology, no more
no less. In this respect, design languages resem-
ble more a revolution than an evolution of design
knowledge representation and processing. In order
to completely benefit from the approach, the whole
traditional industrial setting of methods, processes
and tools must be sincerely reconsidered and newly
balanced.

Graph-based design languages are a new way of
supporting the activity of engineering design [4].
They are inspired by natural human languages, in
which the vocabulary (i.e. the building blocks) and
the rules (i.e. the building laws) define a so-called
language grammar. This means that any correct
sentence in this language (i.e. a permissible vocab-
ulary combination) represents a valid engineering
product variant.

The compilation of graph-based design languages
in a machine called design compiler relieves the de-
sign engineering teams by automatic model gen-
eration from tedious routine works, allows know-
how re-use of design knowledge by re-use of de-
sign rules and eases topological and parametrical
product variations [4]. Graph-based design lan-
guages on the basis of the Unified Modeling Lan-
guage (UML) possess a well distinct information
processing concept in comparison to other known
current approaches.

A big part of the increase in productivity, higher
model quality and shorter time-to-market stems
from modeling and processing of the design knowl-
edge on a higher level of abstraction then done

previously using model-to model transformations.
The mapping of this abstract level into a specific
data format is provided by compiler plug-ins using
model-to-text transformations. This avoids an in-
termixing of the per se pure design knowledge with
vendor-specific representation dependencies.

2. Aircraft cabin design language

Inside an aircraft design process based on graph
based design languages, a cabin layout design lan-
guage has been developed in order to create differ-
ent cabin layouts based on different input data and
requirements. At first, the vocabulary stored in the
class diagram and the basic principle of this cabin
layout approach is introduced. This is followed by a
description of the design process, which is modeled
with rules inside an activity diagram.

The goal of the aircraft cabin layout design lan-
guage is the automatic creation of different cabin
layouts depending on changing requirements and
input values such as e.g. the ratio passenger (pax)
per lavatory or pax per trolley and many more.

The dimensions and boundaries of the cabin are
defined by the preprocessed aircraft structure cre-
ation. From this structure a root area can be ex-
tracted which is the basis for the cabin layout. The
main principle in the cabin layout design language
is the division of the root area provided for the cabin
layout and the allocation of the particular areas to
a specific type like seat, trolley area, lavatory area,
aisle and others. Figure [I] shows the principle and
the first splitting steps of this approach.

™ «packages
Classes

TravelClass

| pax: Integer
recline : mm

= seatsAbreast : Integer

cabin

Q Cabin

[=1 rotatingBins : Boclean

|2 ratioPaxPerTrolley : ONE :
Z ratioPaxPerLavatory : ONE aircraft
Z ratioStowageSpacePerPax : OME Q Aircraft
= lavatoryXdim : mm
é Hic = taperedfreas : Boolean
E side side travelClass "="/ pitch : mm
“—;91/ numlavs ;: Real L]

st o Toteger [0.] | é numTrolleys : Real

numberOfRows : Integer F_; :towag':spasce I:;m;.

totalReqSeatSpaceX:mm F:; s : LSRtEng .

& totalReqLavSpaceX : mm g/ numTraolleyBoxesMeeded : Real

= totalReqTralleySpaceX : mm & numTraolleysAlreadylnstalled : Real

I totalReqServiceSpaceX : mm =l numTransferBoxesTrolley : Real

= numlLavBoxesTolnstall : Real El trolleylength : mm

=] numTrolleyBoxesTalnstall : Real E‘ trolleyWidth : mm

rowWidth : mm El numTransferBoxesLavs : Real
=l maxNumTrolleyBoxesCanBelnstalled : Real

side side numTrolleyBoxesTolnstall : Real
= maxNumlavBoxesCanBelnstalled : Real
e 0.4 triafleyfrea [0..%] numbavBoxesTolnstall : Real
seatsfrea = reqPax : Integer
SeatsArea = TrolleyArea

=l numberCOfRows : Integer = width : mm

width : mm
seatsPerRow : Integer

sefatsfirea
seatRowdrea ([0..*]
Q SeatRowArea

numberDfSeats : Integer

seatRowdrea

EI Seat

= stowageArea

E| CompoundCabinArea

Q LavatoryArea

Figure 2: Cabin class diagram

This principle can again be found in the class di-
agram in which the vocabulary of the cabin design
language is represented, see figure The classes
inherit from the linked class CompoundCabinArea,
which stands for the particular areas of the lay-
out. This class is from the abstract upstream floor
plan definition. The arrow in the lower left cor-
ner shows that the class element is a shortcut to
a class in another project or class diagram. The
classes of the different areas in figure 2linherit from
this class. These inheritances are the linkage to the
floor plan design language. This abstract language
provides the described functionality of dividing the
areas into smaller areas.

2.1. Vocabulary

The various classes Cabin, TravelClass, Side,
SeatsArea, SeatRowArea, Seat, TrolleyArea,
StowageArea and LavatoryArea are the voca-
bles of the cabin design language. This vocab-
ulary can be instantiated e.g. writing Business-
Class TravelClass means that BusinessClass
is an instance of TravelClass. A description of the
vocabulary follows, defining the vocabulary of the
cabin layout design language:

e TravelClass: The class TravelClass can be
instantiated as different travel classes in an air-
craft e.g. first class, business class or economy
class. This class contains the most important
properties for the layout creation. The require-
ments like the ratios, the desired pitch or the

o aircraft. cabin.layout

@ [7] zjavaRules ‘R “.RU|E”
readInput createCabinTwinAisle \ " I{

KD <Rules [4] sjavaRules U Rules

[} sSingleAis

i [inkTCtoA/C sssistSpace | isSingleAisle
1K <Rules =
i o / e
createCabinSingledisle e
elnterfaces) <javaRules @) <javaRules KD -Rule= WD Ruler = [I] javaRules

Pespg determineModuleDistribution seatsPerRow

[3) «javaRules
calcTrolleySpace

[wjavaRules [«javaRules
calcLavSpace dilavs

] «javaRules 4] «javaRules] sjavaRules [4] «javaRules
ClassARHS ClassALHS ClassACTR ClassBRHS

|4 sjavaRules
ClassCLHS
i

] sjavaRules 4] «javaRules 1] sjavaRules

ClassBLHS ClassBCTR —== ClassCRH5

[J] ajavaRules [3] gjavaRules [3] sjavaRules [3] sjavaRules
ClassCCTR. —= FillUpClassRHS FillUpClassLHS FillUpClassCTR

createSidesTwinAisle

FillupClassRHSSinglehisle

[3] sjavaRules

createSidesSingledisle seatsPerRowSinglehisle

sInterfaces [J] sjavaRules
Pecpg meduleDistributionSingledisle

3] sjavaRules [1] sjavaRules

calcTrolleySpaceSingledisle calcLavSpace

[3] sjavaRules
ClassARHSSingleAisle

[J] qjavaRules
ClassALHSSingleAisle
[1) sjavaRules
FillupClassLHSSingleisle

[3] sjavaRules

cabinAttendantSeats

[3] javaRules «Interfaces [3] sjavaRules [J] sjavaRules
rowsSplits ’ spg seatSplits monumentsSplits

«Interfaces 1] sjavaRules cabinAreaShapes
B spg rh L C

Output

Figure 3: Cabin layout activity diagram

given trolleyLength are defined here and de-
termine the layout.

e Side: Each TravelClass can have different
sides like right hand side, left hand side or
in case of a twin aisle approach a center side.
Each travel class is divided in the needed num-
ber of sides.

e SeatsArea, TrolleyArea, StowageArea, La-
vatoryArea: These areas evolve from the di-
vision of the sides in z-direction.

e SeatRowArea: Each SeatArea can be divided
into a number of seatRowAreas, which repre-
sent the space of the seat rows.

e Seat: The SeatRowAreas are divided into par-
ticular seats.

The classes in figure [2] are interconnected and have
several properties. This enables (among some other
things) the linkage of classes through equations.
The associations show the possible data flow. For
example, the required seats space of a side of a
travel class is represented through the equation:
totalReqSeatSpaceX = travelClass.hic + travel-
Class.spaceSRPtoSeatEnd +

travelClass.recline + (numberOfRows - 1) * travel-
Class.pitch.

The properties are instantiated with the classes.
The equations defined in the classes form a sys-
tem of equations relating the instances in the final
model.

2.2. Cabin layout design process

The cabin layout design language is based on the
vocabulary modeled in a class diagram as described
before. Out of this available vocabulary in the class
diagram, the design rules

are created to build up the cabin layout design
incrementally by rule-based model-transformations.
These rules which are model-to-model (M2M) trans-
formations are arranged in the activity diagram and
the work flow of the cabin layout design language
can be processed by the execution of the transfor-
mations. Figure [B] shows the activity diagram of
the developed design language.

At first, the execution of the activity diagram
in figure Bl begins with the requirements and some
start values which are defined in an Excel-file.
These values serve for the characterization of

LHS

(=] ACSingleAisle : Aircraft

RHS

[Z] ACSingleAisle : Aircraft

aircra

[Z CabinSingleAisle : Cabin

¥ rotatingBins = true

Figure 4: Rule createCabinSingleAisle

LHS

RHS

trgvelClass

aself setMame('LH..»
[LH#tc# : Side

«self setName('RH...»
= RH#tc# : Side

seatsPerRow = 0
numberOfRows = 0

seatsPerRow = 0
numberOfRows = 0
% totalReqSeatSpaceX

rowWidth = 0

% totalReqSeatSpaceX

rowWidth = 0

Figure 5: Rule createSidesSingleAisle

the different travel classes and their properties.
The first rule readInput in figure imports
the data contained in this Excel-file, so that the
data needed can be accessed inside the design
language. The input parameters of each travel
class are in detail: numberOfSeats, recline,
hic, pitch, spaceSRPtoSeatEnd, seatsAbreast,
ratioPaxPerTrolley, ratioPaxPerLavatory,
ratioStowageSpacePerPax, lavatoryXdim,
numTrolleysAlreadyInstalled, maxNumTrolley-
BoxesCanBeInstalled, maxNumLavBoxesCanBeIn-
stalled, trolleyLength

and trolleyWidth.

After importing the required start values, an ab-
stract instance of the class Cabin is created in the
rule createCabinTwinAisle shown in figure @ or in
an analogous rule createCabinSingleAisle. Ac-
cording to the upstream configuration, the branch

of a single aisle layout or the branch of a twin aisle
layout is chosen. This current choice is modeled
with a red arrow. It describes an alternative way,
if the rule could not be applied. Elsewise the work
flow follows the ordinary black arrow. The illustra-
tion in this report describes the work flow of the
branch of a single aisle configuration.

The following rule 1inkTCtoA/C in figure [l cre-
ates a connection between the cabin (the instance
Cabin) and the travel classes (the instances of
TravelClass). After that, the split of the door
area to get the assist space next to the doors is
performed in the rule assistSpace. The next rule
isSingleAisle defines the branch, which will be
followed, depending on the desired configuration.

The rule createSidesSingleAisle in figurddl
creates for each travel class a left hand side and
a right hand side. In the rule seatsPerRowSingle-

Figure 6: Design graph visualization (topological layout)

Aisle, the number of seats per row is indicated
according to predefined values. For example, if
there are 6 seats abreast in a single aisle configura-
tion the distribution is 3 on the left and 3 on the
right. Then the distribution of the modules is set in
moduleDistributionSingleAisle. This means, if
there are for example 18 seats in a travel class with
a 3left/3right configuration, there will be 3 rows on
the left and 3 rows on the right with 3 seats each.
If the number of desired seats does not fit to the
seat and module distribution, it is treated accord-
ingly and an output is given if the desired number
of seats cannot be installed.

Afterwards the interface spg is called to per-
form mathematical calculation respectively to solve
the system of equations, which is set up accord-

ing to the instances respectively their classes in
the class diagram (vocabulary) as described be-
fore. The rule calcTrolleySpaceSingleAisle de-
termines hereby the needed space for the trolleys,
distributes them and gives an output, if there are
too many trolleys, which cannot be installed. In a
similar way, the needed space for the lavatories is
calculated in calcLavSpace.

The following four rules (ClassARHSSingle-
Aisle, ClassALHSSingleAisle, FillUpClassRHS-
SingleAisle, FillUpClassLHSSingleAisle) as-
semble the monuments and the seats into the cabin.
Following an installation sequence, the monuments
and seats are placed into the cabin. To get the
number of seats for the so-called Fil1UpClass an
algorithm has been developed. It checks the calcu-

lated seat and monument distribution and adapts
the number of elements in the cabin, until the de-
sired ratios for the FillUpClass are reached. Af-
terwards the cabin attendant seats are added in the
rule cabinAttendantSeats.

With the rule rowsSplits the SeatsArea in the
floor plan are split into particular rows and the
boundaries are calculated by calling the mathemat-
ical interface spg. The rule seatsSplits splits the
rows into seats with space for legroom and backrest.
After another call of the mathematical interface spg
in the rule monumentsSplits the dimensions of the
monuments in y-direction are adapted. With the fi-
nal calculation and the rule Output printing output
to the console, the cabin layout activity is finished.

2.3. Visualization

The cabin layout configuration created with the
described cabin design language can be viewed in
different ways to get out the information needed
for further improvement and development of the
cabin layout. Figure [0 shows the abstract graph of
the created cabin layout design. Every node of the
graph represents an instance in UML. Each UML
instance in the design graph is hereby shown as
a small circle, also the association and inheritance
links are shown. The principle of dividing the root
area iteratively into smaller areas can be retrieved
in the structure of the design graph.

Since the cabin layout has not only been build up
logically, but has also been calculated and assem-
bled in physical 3-D dimensions, the graph nodes,
respectively the instances of our model, have po-
sitioning information. By placing the nodes using
this information of their true position later in 3-D,
the following arrangement shown in figure [l can be
computationally achieved and displayed.

To examine and improve the cabin layout design
language, a special cabin layout view has been de-
veloped. Based on the cabin layout data, which is
the same than in the two views above, the view in
figure 8 shows the individual areas of the cabin lay-
out. The colored elements comply with the areas
in the design language. Yellow stands for aisle,
turquoise for the seats, green for the lavatories
and pink for the trolleys and the galleys respec-
tively.

2.4. Discussion

The design language for cabin layout of single
aisle and twin aisle configuration addresses the fol-
lowing requirements and needs:

Layout creation depending on ratios as input
Considering ratios of each travel class

Ratio PAX per lavatory

Ratio PAX per trolley

Ratio PAX per stowage

Galley distribution

Lavatory distribution

Partition definition

Stowage installation

Doortype

Evacuation spaces such as passageway, assist
space, cross aisle areas

e Seats parameters: pitch, recline, HIC (Head
Injury Criterion), seats abreast

Besides the aforementioned points several other
points need also to be considered. There are some
rules i.e. aspects in the cabin layout that still have
been neglected. Since any expression in a formal
language is interpreted and translated by a ma-
chine, any formalized rules must represent what is
really wanted. In this respect the verbal formula-
tion of a design rule expressed in the words of a
natural language must be very clear in order to al-
low a correct implementation in a design language.

Besides the current cabin layout design sequence
implemented, an even more variable way of plac-
ing the monuments and seats could be developed
to encode more “unconventional” designs.

As two main advantages of graphical modeling,
the possibility of graphical rules and coded JAVA
rules at the same time allows that the rules writ-
ten can be as complex as a program written in a
JAVA| if need be. This means that the graphi-
cal language is extensible be conventional program-
ming techniques. Furthermore, the encapsulation
of design knowledge in form of design rules gives an
clear overview of the various steps during the de-
sign process and allows therefore not to get lost in
a big confusing code accumulation.

2.5. Overall aircraft cabin generation pro-
cess

The successful overall design of an aircraft cabin
involves many key disciplines. As the current state-
of-art it can be mentioned that each discipline (in-
dustrial design, continuum mechanics, fluid me-
chanics, electronics and so on) understands its own
(disciplinary) view on the system. As described in
the introduction, the multi-disciplinary integration

i

, B0

Figure 8: cabin layout of single aisle configuration

of all these different models into one single and con-
sistent “master model” is currently in industry an
unsolved open problem.

Graph-based design languages handle the con-
sistency problem of an integrated model quite dif-
ferently: Instead of trying to solve the integration
problem by merging different models into one single
master model, all different disciplinary models are
automatically generated from a central model ﬂﬂ]
and are for this reason consistent by definition.

The price for this achievement is the formulation
of aircraft design knowledge in form of a design lan-
guage in UML format. As far as the engineering is
concerned, the design of an aircraft cabin involves
(among many others which have to be omitted here
for the reason of space) the following important
steps [3]:

e definition of the cabin design variants and their
boundary conditions
(plane dimensions, number of frames, defini-
tion of crown area and so on)

e definition of cabin architecture and layout
(number of classes, number of seats, definition
of various ratios)

e definition of networks and routes
(the network is generated through an algo-
rithm, while routes which are intentionally pre-
determined are read in from a database)

e definition of network components and equip-
ment
(currently the equipment is read in from a
database)

e definition of the network
(an algorithm is used to connect equipments
appropriately. The corresponding connection

information is stored in a dedicated UML class
diagram)

e routing of electrical cables in 3-D
(routing includes arbitrary routing space
boundaries and collision testing in 3-D)

e integration of routing result into 3-D geometry
model
(through the 3-D model can be navigated in a
virtual environment)

e results computation and architecture trades
(for comparison of design variants, the weight
of the cables or the diameter of the routes in
the cross sections at the frame positions is cal-
culated and exported to MS-EXCEL or CATIA
V5 for further processing)

e design modifications
(changing the input and re-executing the above
processes allows the exploration of the design
space through a comparison of two or more
variants)

In an industrial research project ongoing for sev-
eral years, several smaller design languages for dif-
ferent purposes have been combined together into
one large design language to generate the aircraft
cabin models. This combined design language con-
tains all the necessary design information in an (re-
)Jexecutable form.

The hierarchical and modular decomposition of
the overall aircraft cabin design task allows the
encapsulation of individual design tasks into spe-
cialized design languages. By combining the cabin
layout language with the geometry generation lan-
guage, a 3-D model of the aircraft cabin can be
generated.

Generating a class layout for an aircraft cabin is
a task with involves the concurrent satisfaction of
many constraints. For the multidisciplinary inte-
gration problem of the necessary networks for air,
power and data into the crown area of the aircraft
the cabin layout represents a significant part of the
boundary conditions definition.

Adding the routing language to the network gen-
eration algorithm allows the integration of the elec-
trical networks into the crown area of the aircraft.
This will be shown in the following sequence of fig-
ures [@ to [I0 which show the intermediate results of
the different steps during the routing.

Together with the previous information from the
cabin layout, from which a complete 3-D geome-
try model can be generated and the placement in-
formation of the network equipment including the
harness information for the power and information
networks can be started. In a first step, the gener-
ation of the 3-D geometry model is shown on the
left hand side in figure @ From this 3-D geometry
model, the routing space on the right hand side in
figure [@ is automatically constructed.

Figure 9: Extraction of routing space (right) from aircraft
cabin CAD model (left) [3]

In the second step the network boxes are placed
in the routing space, see figure[IQlleft. A routing al-
gorithm is then used to create the cable connections
according to a harness plan loaded from a database.
The routing algorithm guarantees a shortest path
search and includes collision testing. The routing
results are shown in figure [IQ] right.

Since the 3-D model in figure [0l is computation-
ally accessible any information can be extracted.
One finds that the length of network 1 adds up
to 558,83 meters while network 2 has a length of
582,50 meters. The two equipment weights sum
up to 404,22 kg (for version 1) versus 364,22 kg
(for version 2) and the total weight of equipment
and cables sums up to 963,05 kg versus 946, 72 kg
respectively.

Figure 10: Network components (left) routing algorithm re-
sult (right) [3]

From figure the two network quantities to-
tal weight and total metwork cable length can be
easily computed and may be used as performance
measures for the comparison of the two generated
aircraft designs. The two functionally equivalent
networks do however differ in the different internal
distribution infrastructure and are therefore con-
sidered as design trades. While network version 1
has 8 internal nodes, network version 2 has only
4 internal nodes. As a result, the internal weight
distribution can be computed E]

2.6. Design trades

Two alternative networks with a different in-
frastructure for power and information distribution
were automatically constructed through compila-
tion of the design language in a design compiler.
As a result, the two network quantities total weight
and total network cable length were selected as per-
formance measures for the comparison of the two
generated aircraft designs. By extending this ap-
proach in the future, the Pareto surfaces of com-
peting aircraft cabin architectures can be automat-
ically constructed, thus serving the cabin architect
as a solid guideline for a justified decision making
in complex future multi-disciplinary aircraft cabin
design scenarios.

3. Summary and outlook

A consistent central model which covers several
distinct engineering disciplines such as a cabin lay-
out model (for/from operations), a CAD geometry
model (for/from construction in 3-D) and an electri-
cal systems model (from/for network analysis) was
built using graph-based design languages.

Figure 11: Detailed view of the routed network connections (including collision testing)

The analysis included the generation of the class
layout (seats, lavatories and so on) and showed the
integration of several routes of a power and an infor-
mation network. The routing algorithm guarantees
a shortest path search and includes collision testing.

As described, many components of electrical sys-
tems have been considered and installed in the
model using graph-based design languages. In this
project phase, the focus was on the integration of
several systems and to show the possibility of repre-
senting large models inside the graph based design
languages, as well as on the interdependencies be-
tween different domains of an aircraft design.

On basis of data from a twin aisle configura-
tion, a very good demonstration of the capability
of system integration including electrical boxes and
connections inside the graph-based design language
has been achieved. Figure [I[T] shows a screenshot
of the described system integration with the boxes
and the interconnecting cables, routed by a routing
algorithm. To give a taste of numbers, 745 equip-
ment boxes have been installed in total. They are
connected with 1357 cables. The boxes divide into
205 power and information distribution equipment
boxes, 57 antenna boxes and related boxes, as well
as 23 boxes, 8 switches and 452 small equipment
boxes for integrated modular avionics.

10

A future task will be an even more detailed model
implementation of this system integration problem
to support the developing engineer in the design
by further process automation. The data, collected
from block diagrams and technical documentations
of former aircrafts, can be replaced by the real data
of the actual aircraft development. After that, algo-
rithms considering functional requirements can be
developed, to determine the number of equipment
boxes automatically and achieve automatic place-
ment (e.g. packaging) by suitable algorithms.

References

[1] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kotten-
stette, P. Antsaklis, V. Gupta, B. Goodwine, S. Baras,
J. and Wang, Cyber-physical system integration, Pro-
ceedings of the IEEE 100 (January) (2012) 29-44.

[2] S. Rudolph, B. Kroplin, Entwurfsgrammatiken - Ein
Paradigmenwechsel 7, Der Priifingenieur 1 (April) (2005)
34-43.

[3] S. Rudolph, S. Hess, J. Beichter, M. Motzer, M. Eheim,
Architectural analysis of complex systems with graph-
based design languages, 4th International Workshop on
Aircraft System Technologies (AST 2013), Hamburg,
April 23-24. .

[4] S. Rudolph, Ubertragung von Ahnlichkeitsbegriffen, Ha-
bilitation, Universitat Stuttgart, Stuttgart (2002).

[5] IILS Ingenieurgesellschaft fiir intelligente Ldsun-
gen und Systeme mbH, The design compiler 43,
http://www.iils.de/43.htm.

http://www.iils.de/43.htm

	Introduction
	Aircraft cabin design language
	Vocabulary
	Cabin layout design process
	Visualization
	Discussion
	Overall aircraft cabin generation process
	Design trades

	Summary and outlook

