
ARCHITECTURAL ANALYSIS OF COMPLEX
SYSTEMS WITH GRAPH-BASED DESIGN

LANGUAGES

Stephan Rudolph∗1, Stefan Hess1, Johannes Beichter1

Martin Motzer1 and Marc Eheim1

1Similarity Mechanics Group
Institute for Statics and Dynamics of Aerospace Structures, University of Stuttgart

Pfaffenwaldring 31, D-70569 Stuttgart, Germany

rudolph@isd.uni-stuttgart.de

Abstract
Graph-based design languages are a new way of supporting the activity of engineering design
throughout the whole product life-cycle [1] with means of modern information technology.
Through the machine-executed compilation of design languages in a design compiler, the au-
tomated generation of multi-disciplinary consistent models is now a reality [11, 12]. The au-
tomatic model generation relieves the engineering design teams from tedious routine works,
allows know-how re-use of design knowledge by re-use of design rules and generates com-
plex topological and parametrical system design variants by the press of a button. The work
describes several important aspects in an ongoing industrial research project for engineering
aircraft cabins using graph-based design languages. The aircraft cabin design problem com-
prises the following engineering aspects: definition of the cabin layout, generation of the 3-D
geometry model, integration of air-conditioning system, power and information network archi-
tectures as well as packaging, routing and dimensioning of all involved components, while still
insuring overall design model integrity and consistency.

1 INTRODUCTION
Architecting complex systems, i.e. the decision making on the architecture of aircraft
cabins requires much engineering insight into the heavy multi-disciplinary coupling of
the combined and interconnected sub-systems [5] and networks inside the cabin. Due
to this heavy coupling inside the cabin, there existed in the past a certain tendency
to stick within the “experience space” of (more or less well) known solutions, since
within the built architectures there exists an (more or less sophisticated) established
way how to deal with the couplings and to resolve it in several design steps.

AST 2013, April 23 - 24, Hamburg, Germany



Stephan Rudolph et. al.

As a direct consequence, the potential of new architectural solutions in a com-
plex system design environment is difficult to assess a priori, since for an equally in
depth assessment it would be required to elaborate all architectural alternatives with the
same qualitative and quantitative level of engineering analysis as is available a poste-
riori for the cabin architectures built in the past. However, an in depth investigation of
several competing alternatives using conventional engineering analysis using human
labor techniques is economically not feasible. As a result, the potential of new cabin
architectures is neither fully explored nor tested. Instead, conventional solutions which
may not represent the optimal solution anymore are repeatedly built.

In order to overcome this kind of highly unsatisfactory deadlock situation, graph-
based design languages have been conceived to solve this kind of complex systems
engineering problem. Graph-based design languages relieve the design engineering
teams by automatic model generation from tedious routine works, allows know-how
re-use of design knowledge by re-use of design rules and allows very easily topological
and parametrical design variations. Since faster time-to-market, higher product quality
and doing things already first time right are key success factors, there exists great
interest in new knowledge-based engineering tools in the aerospace industry (i.e. The
Boeing Company [3], Rockwell Corporation [8], Airbus Industries [5] and others). In
this respect graph-based design languages can be interpreted as a modern, rule-based
extension of well-established engineering tools and practices.

This report illustrates several important aspects of a research project between an
aircraft manufacturer and the Similarity Mechanics Group at Stuttgart University re-
garding engineering complex systems such as an aircraft cabin. The aircraft cabin de-
sign problem comprises among others [5] the following engineering problem aspects:
definition of the cabin layout, generation of the 3-D geometry model, integration of the
air-conditioning system, power and information network architecture, packaging and
routing of all involved physical components while still insuring overall design model
integrity and consistency.

The report is structured as follows: after the introduction in chapter 1, the rep-
resentation and knowledge processing mechanisms of design languages are described
in chapter 2. The main steps of aircraft cabin design are described and illustrated in
chapter 3. The result discussion and summary closes the paper in chapter 4.

2 KNOWLEDGE REPRESENTATION AND PROCESSING IN
GRAPH-BASED DESIGN LANGUAGES

Graph-based design languages are a novel means of supporting the activity of engineer-
ing design throughout the whole product life-cycle with new knowledge processing
technologies borrowed from engineering, computer science and artificial intelligence.
From engineering science stems the systematic design methodology as introduced by
Pahl and Beitz in the early 1970s [7]. In this methodology, product requirements are
systematically transformed into abstract product functions, from there transformed into
solution principles and finally transformed into product equipment.

2



AST 2013, April 23 - 24, Hamburg, Germany

In computer science, the idea of a sequence of mappings was abstracted and
adapted for code generation purposes. The philosophy underlying the model-driven
architecture (MDA) which advocates a sequence of model-transformations for code
production starts now dominating software engineering projects. In the artificial intel-
ligence field, automated constraint processing techniques have been developed which
help to maintain parameter information consistency over a constraint set represent-
ing intercoupled models. In the area of systems engineering, ways of dealing with
couplings in complex systems by means of modern model-based systems engineering
(MBSE) methods represents one of the most up-to-date trends in the field.

Graph-based design languages merge all these principles from the aforemen-
tioned disciplines into a generic design methodology for engineering complex systems
which guarantees a consistent design information representation. Graph-based design
languages are hereby inspired by our natural languages, where the design vocabulary
(i.e. the language words) and the design rules (i.e. the building laws) define a so-called
language grammar [4]. This means that a permissible sentence in this language (i.e. a
permissible vocabulary combination) represents a valid engineering design. Through
the machine-executed compilation of such a graph-based design language in a design
compiler [2], a very powerful framework for engineering design can be established.

2.1 Vocabulary
As an information representation format for graph-based design languages the unified
modeling language (UML) [6] is used. UML allows a flexible, easy to convert in other
formats and extendible engineering information representation in an internationally
standardized, non-proprietary and open format. Furthermore, a multitude of free, open-
source and commercial software tools for editing, storing and displaying UML are
available. In terms of an engineering design language, the individual vocabulary is
represented as UML classes. The information associated with a specific vocabulary is
stored as attributes and methods of that class. The existing (static) interdependencies
between the vocabulary are stored in the UML class diagram using principles from
object-oriented modeling such as information hiding, encapsulation and inheritance.

2.2 Rules
In a graph-based design language as it is used in this work, the (dynamic) dependen-
cies between different design vocabulary is expressed in form of a rule following an
if→then-scheme. In UML, such a rule can be represented as a model-to-model (M2M)
or a model-to-text (M2T) transformation, depending on whether the outcome remains
a UML model or is converted into another string-based text format. The left-hand side
(LHS) as if -part states the precondition(s), while the right-hand side (RHS) as then-
part states the postcondition(s) of the model transformation.

The power of the graphical rule format for engineering design knowledge is two-
fold: First, the rule is a unified scheme for topological as well as parametrical model
modifications. Second, the graphical representation of UML offers an intuitive way to
express the topological changes in a graph-based instead of a string-based format.

3



Stephan Rudolph et. al.

2.3 Production Systems
A sequence of rules can be stored in a production system (in UML called activity di-
agram). These production systems may be hierarchically nested (i.e. that a production
system may call during its execution another production system) and allow the struc-
turing of rules into different modules. Each production system has a unique start and
end point of the execution. Rules can therefore very easily grouped according to the se-
mantic meaning of their content. Whole chunks of design rules which represent whole
design activities (such as packaging a given set of geometric objects in a building space
or the routing of a given set of cable connections in a predetermined routing space) can
thus be clustered and grouped together in a meaningful way.

The approach of graph-based design languages offers the great advantage that a
production system (i.e. the design rules contained therein) can be easily modified and
re-executed automatically, thus resulting in a different kind of product architecture.
Due to the fact that besides the changed rule the remaining design rules remain unaf-
fected, the resulting different aircraft architectures are built qualitatively and quantita-
tively with the same level of engineering detail. This makes the subsequent engineering
simulation analysis and design evaluation of alternative competing aircraft cabin archi-
tectures straightforward, sound and robust.

2.4 Processing
The compilation of the graph-based design language results internally in a central and
consistent model (i.e. the so-called design graph) from which disciplinary views can
be generated automatically via interfaces to dedicated engineering analysis tools. The
existence of a central model reduces the amount of necessary bidirectional interfaces
(also called plugins) from n(n− 1) to n [9]. Furthermore the guarantee for consistent
models is computationally easier to maintain if all models are generated from one
central model using constraint processing mechanisms [10].

Currently, the following interfaces in the design compiler [2] are used for engi-
neering analysis: a CAD interface for CATIA V5, a CFD interface to FLUENT and a
company-owned legacy code, a control software interface to MATLAB/SIMULINK,
a computer-algebra system (CAS) interface to MATHEMATICA and an interface for
MS-EXCEL. Further analysis tools could be added through additional interfaces in the
design compiler in an easy and straightforward manner.

Graph-based design languages are also a means to generate models for virtual
reality (VR) automatically. VR as a technique for immersive visualization of complex
3-D geometry and post-processing of complex engineering analysis results is therefore
ideally suited as a back-end for the visualization of computational results. Since design
languages are represented graphically in UML, the “programming” of graph-based
design languages could also be done graphically using the VR as the programming
front-end. In the near future, graph-based design languages may thus offer the potential
to fully support complete iterative design cycles (i.e. design optimization loops) in a
VR environment including interactive rule modifications, renewed model generation
and simulation analysis leading to an updated design evaluation.

4



AST 2013, April 23 - 24, Hamburg, Germany

3 AIRCRAFT CABIN DESIGN

The design of an aircraft cabin involves many disciplines. As the current state-of-art it
can be mentioned that each discipline (industrial design, continuum mechanics, fluid
mechanics, electronics and so on) understands its own (disciplinary) view on the sys-
tem. The multi-disciplinary integration of all these different models into one single and
consistent “master model” is currently in industry an unsolved open problem.

Graph-based design languages handle the consistency problem quite differently:
Instead of trying to solve the integration problem by merging different models into
one single master model, all different disciplinary models are automatically generated
from a central model and are for this reason consistent by definition.

The price for this achievement is the formulation of aircraft design knowledge
in form of a design language in UML format. As far as the engineering is concerned,
the design of an aircraft cabin involves (among many others which have to be omitted
here for the reason of space) the following important steps:

• definition of the cabin design variants and their boundary conditions
(plane dimensions, number of frames, definition of crown area and so on)
• definition of cabin architecture and layout

(number of classes, number of seats, definition of various ratios)
• definition of networks and routes

(the network is generated through an algorithm, while routes which are inten-
tionally pre-determined are read in from a database)
• definition of network components and equipment

(currently the equipment is read in from a database)
• definition of the network

(an algorithm is used to connect equipments appropriately. The corresponding
connection information is stored in a dedicated UML class diagram)
• routing of electrical cables in 3-D

(routing includes arbitrary routing space boundaries and collision testing in 3-D)
• integration of routing result into 3-D geometry model

(through the 3-D model can be navigated in a virtual environment)
• results computation and architecture trades

(for comparison of design variants, the weight of the cables or the diameter of
the routes in the cross sections at the frame positions is calculated and exported
to MS-EXCEL or CATIA V5 for further processing)
• design modifications

(changing the input and re-executing the above processes allows the exploration
of the design space through a comparison of two or more variants)

In the currently ongoing industrial research project, several smaller design languages
for different purposes are combined together into one large design language to generate
the aircraft cabin models. This combined design language contains all the necessary
design information in an (re-)executable form.

5



Stephan Rudolph et. al.

Figures 1 and 2 show exemplarily how the geometry of the fuselage is built in an
incremental way. In order for the rule in figure 1 to be executable, an instance plane
has to exist. In this case the design rule creates the instance spant0 and links it to

Figure 1: Design rule: Adding spant0 to plane

the instance plane. Similarly, figure 2 shows the design rule how further instances
of the class spant are added using a counter supposed it is the instance with the slot
lastelement=true. In this way, a linked list of aircraft frames (in german Spant)
is created. The hierarchical and modular decomposition of the overall aircraft cabin

Figure 2: Design rule: Adding spant0 to plane

design task allows the encapsulation of individual design tasks into specialized design
languages. By combining the cabin layout language with the geometry generation lan-
guage, a 3-D model of the aircraft cabin can be generated. Adding the routing language
to the network generation algorithm allows the integration of the electrical networks
into the crown area of the aircraft. This will be shown in the following sequence of
figures 3 to 6 which show the intermediate results of the different steps.

6



AST 2013, April 23 - 24, Hamburg, Germany

Generating a class layout for an aircraft cabin is a task with involves the concur-
rent satisfaction of many constraints. For the multidisciplinary integration problem of
the necessary networks for air, power and data into the crown area of the aircraft the
cabin layout represents a significant part of the boundary conditions definition.

Figure 3 shows a simple layout editor which allows to manipulate the seat lay-
out in an aircraft cabin. In fact, the layout of an aircraft cabin consists of about one
hundred design rules which have been omitted here for the reason of space. The cabin
layout shown here implicitly defines many of the connection coordinates of the start-
ing and ending points of the networks and is therefore only shown to illustrate the
decomposition of a complex design process into individual design steps.

Figure 3: Screenshot of interactive cabin layout editor

Since networks typically posses an infrastructure of internal (re-)distribution
nodes and interconnections, the determination of an “optimal” network represents a
non-trivial optimization problem. As a result, the positions of all components (shown
as different colors) of the internal network nodes are shown in figure 4.

Figure 4: Network components placement in aircraft crown

Not shown in figure 4 is the position of the primary energy supply unit. Its po-
sition may be changed during the design, since the overall properties of the network
(e.g. cable length, weight) may depend on the placement of this unit.

Together with the information from the cabin layout (see figure 3), from which a
complete 3-D geometry model can be generated and the placement information of the
network equipment including the harness information (see figure 4), the integration of
the networks for power and information can be started. In a first step, the generation
of the 3-D geometry model is shown on the left hand side in figure 5. From this 3-D
geometry model, the routing space on the right hand side in figure 5 is automatically
constructed.

7



Stephan Rudolph et. al.

In the second step the network boxes are placed in the routing space, see figure 6
left. A routing algorithm is then used to create the cable connections according to a
harness plan loaded from a database. The routing algorithm guarantees a shortest path
search and includes collision testing. The routing results are shown in figure 6 right.

Figure 5: Extraction of routing space (right) from aircraft cabin CAD model (left)

Figure 6: Network components (left) routing algorithm result (right)

From figure 6 the two network quantities total weight and total network cable
length can be easily computed and may be used as performance measures for the com-
parison of the two generated aircraft designs. The two functionally equivalent networks
do however differ in the different internal distribution infrastructure. While network
version 1 has 8 internal nodes, network version 2 has only 4 internal nodes. The inter-
nal weight distribution is shown in figure 7.

8



AST 2013, April 23 - 24, Hamburg, Germany

Since the 3-D model in figure 6 is computationally accessible any information
can be extracted. One finds that the length of network 1 adds up to 558, 83 meters
while network 2 has a length of 582, 50 meters. The two equipment weights sum up
to 404, 22 kg (for version 1) versus 364, 22 kg (for version 2) and the total weight of
equipment and cables sums up to 963, 05 kg versus 946, 72 kg respectively.

Figure 7: Weight distribution of network components and cable routes

4 SUMMARY AND OUTLOOK
A consistent central design model which covers several distinct engineering disciplines
such as a CAD-model (for/from construction in 3-D), a continuum mechanics model
(from/for stress analysis), a fluid mechanics model (from/for flow analysis), a con-
trol model (from/for control design) and so on may be achieved by using graph-based
design languages. In this work, the generation of a consistent central model for the
multi-disciplinary analysis of an aircraft cabin has been shown. The analysis included
the generation of the class layout (seats, lavatories and so on) and showed the integra-
tion of several routes of a power and an information network. The routing algorithm
guarantees a shortest path search and includes collision testing.

Two alternative networks with a different infrastructure for power and informa-
tion distribution were automatically constructed through compilation of the design lan-
guage in a design compiler. As a result, the two network quantities total weight and to-
tal network cable length were selected as performance measures for the comparison of
the two generated aircraft designs. By extending this approach in the future, the Pareto
surfaces of competing aircraft cabin architectures can be automatically constructed,
thus serving the cabin architect as a solid guideline for a justified decision making in
complex future multi-disciplinary aircraft cabin design scenarios.

9



Stephan Rudolph et. al.

References
[1] P. Arnold and S. Rudolph, ”Bridging the gap between product design and product

manufacturing by means of graph-based design languages”, TMCE 2012 Sym-
posium, Karlsruhe (2012)

[2] Design Compiler 43, Ingenieurgesellschaft für Intelligente Lösungen und Sys-
teme mbH, www.iils.de, last access March (2013)

[3] J. Heisserman, R. Mattikalli and S. Callahan, ”A grammatical approach to design
generation and its application to aircraft systems”, Proceedings Generative CAD
Systems Symposium ‘04, Pittsburgh, PA (2004)

[4] B. Kröplin and S. Rudolph, ”Entwurfsgrammatiken Ein Paradigmenwechsel?”,
Der Prüfingenieur 26, 34-43 (2005)

[5] B. Landes and S. Rudolph, ”Aircraft cabin architectures including tolerancing
using a graph-based design language in UML”, Proceedings Deutscher Luft- und
Raumfahrt Kongress 2011, Bremen, 27.-29. September (2011)

[6] The Object Mangament Group (OMG), OMG Unified Modeling Language
(OMG UML), Superstructure V2.4.1, OMG Document Number 2009-02-02,
http://www.omg.org/spec/UML/2.2/Superstructure, last access August (2011)

[7] G. Pahl and W.Beitz, Engineering Design. (Springer, London, 1996)
Originally published in German: G. Pahl und W. Beitz, Konstruktionslehre.
(Springer, Heidelberg, New York, 1993)

[8] S. Reddy, K. Fertig and D. Smith, ”Constraint management methodology for con-
ceptual design tradeoff studies”, Proceedings of 1996 ASME Design Engineering
Technical Conference and Computers in Engineering Conference, paper DTM-
1228, August 18-22, Irvine, CA (1996)

[9] S. Rudolph, ”On design process modelling aspects in complex systems”, 13th
NASA-ESA Workshop on Product Data Exchange (PDE 2011), May 11-12, Cy-
press, California, USA (2011)

[10] S. Rudolph and M. Bölling, ”Constraint-based conceptual design and automated
sensitivity analysis for airship concept studies”, Aerospace Science and Technol-
ogy 8, 333-345 (2004)

[11] J. Schaefer and S. Rudolph, ”Satellite Design by Design Grammars”, Aerospace,
Science and Technology 9, 81-91 (2005)

[12] S. Vogel, B. Danckert and S. Rudolph, ”Knowledge-based design of SCR Sys-
tems using graph-based design languages”, MTZ 73, 50-56, August (2012)

10


	INTRODUCTION
	KNOWLEDGE REPRESENTATION AND PROCESSING IN GRAPH-BASED DESIGN LANGUAGES
	Vocabulary
	Rules
	Production Systems
	Processing

	AIRCRAFT CABIN DESIGN
	SUMMARY AND OUTLOOK

